A characterization of semi-simple rings with the descending chain condition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Semi-simple Rings with the Descending Chain Condition

H. Weyl has defined a semi-simple algebra (of finite rank) to be an algebra which admits a faithful semi-simple linear representation. Now, algebras are rings with a field of operators; Artin and others have shown that the theory of semi-simple algebras can be generalized to a theory of semi-simple rings (without the field of operators) provided we replace the condition of finite rank by suitab...

متن کامل

Semi-simple Extensions of Rings

In this paper we investigate the conditions under which a given ring is a sub-ring of a semi-simple ring. For convenience, we say that a ring A is an extension of a ring B, if B is a sub-ring of A. It is found that the existence of a semi-simple extension is equivalent to the vanishing of the extension radical, a two-sided ideal defined analogously to the ordinary radical. In Theorem II we give...

متن کامل

Rings with a setwise polynomial-like condition

Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.

متن کامل

On Regular Rings Satisfying Weak Chain Condition

In this paper, we shall study regular rings satisfying weak chain condition. As main results, we show that regular rings satisfying weak chain condition are unit-regular, and show that these rings have the unperforation and power cancellation properties for the family of finitely generated projective modules.

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1946

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1946-08703-0